What can science tell us about how pupils learn best?

 “The mind is at last yielding its secrets to persistent scientific investigation.

We have learned more in the last 25 years about how the mind works

than we did in the preceding 2500”.

Daniel Willingham, 2009.


The more we learn about the brain, the more we learn how much knowledge and memory matters.


Last post, thanks to Ben Goldacre, Tom Bennett and Andrew Old, I explored the difficulty of distinguishing between scientific research and neuro-myths. Things moved since. The Monday after, Tom Bennett launched with astonishing energy into organising the first ever teacher-led wiki-conference on education and research for September. Everything from format, venue, speakers, helpers, sponsors, web design and even its name is being crowd-sourced through social networks. Answering Ben Goldacre’s call to arms, championed by both teaching and research communities, the barricades of evidence-based practice are well and truly manned. Within 24 hours Tom had amassed a mailing list of over 100 people; 24 hours after ResearchED went live it had over 300 followers. Sam Freedman, David Weston and Ben Goldacre were quickly confirmed as speakers. The appetite for this is out there.



This post, I want to set out how scientific enquiry and research evidence is discovering how the mind learns, and might guide us towards ‘working out what works best’- the ResearchED tagline.


All sorts of things strike us as important in learning, given basic physical, physiological and emotional security: extrinsic and intrinsic motivation, expectations, mindset, prior knowledge, intrinsic interest in the topic, perceived relevance, challenge, curiosity, attention, focus, effort, comparing examples, practice, feedback, memory, revision, summarising, choice, self-discipline, responsibility, ownership, parental support, role models, the emotional connection with the teacher and the organisation of the material, hard work … the list could go on and on. Understanding what matters most in learning is crucial if we are to focus our teaching.


Is Cognitive Science good or bad science?


Cognitive science is an interdisciplinary field of academic researchers from psychology, neuroscience, linguistics, philosophy, computer science, and anthropology who seek to understand the mind and apply the findings to education. So, is cognitive science just as much pseudo-science as brain gym, or does it practise what it preaches? In this blog post I want to strip cognitive science down to its essence, and apply two litmus tests:

One. To what extent is the scientific research robust, peer-reviewed and rewarding when re-read?

Two. To what extent does the scientific evidence have practical classroom applications that reward re-using?

Litmus Test Litmus Test One: Just how robust is the research?

Decades of scientific research (from 1968) have explored what’s vital for learning. In a nutshell, here are three core principles, and their intuitive and empirical grounding.

1. Working memory load should be minimised.

2. Long-term memory retention should be maximised.

3. Knowledge schema should be accumulated and automated.

examples 1. Working memory load

In a nutshell, working memory is used for thinking, and because it is like a small bottleneck, it is easily overloaded. If working memory is overloaded, it makes new things much harder to learn and remember.

Intuitively, we know this to be true from learning to drive and learning to teach. When starting to drive, there’s too much to keep in mind: pedals, gears, indicators, mirrors, steering and instructions overwhelms us. Not dissimilarly, when starting to teach in your first school, your working memory feels bottlenecked: new systems, policies, rules, 200+ names, locations and sanctions all overload your brain.  Similarly, new Year 7s feel overwhelmed by so many new classmates, teachers, subjects, concepts, older students, rules, locations and playground interactions, and many tears are shed.

Empirically, the past half-century of international research has provided overwhelming and unambiguous evidence on this issue, with Atkinson & Shiffrin (1968) as the first exploration into working- and long-term memory. Meta-syntheses from Sweller (1998), Kirschner et al (2006) and Willingham (2009) are conclusive.


mnemonics 2. Long-term memory retention

The insight here is that long-term memory is a vast storehouse that helps us overcome bottleneck limitations in our working memory. So learning is actually remembering in disguise: ‘if nothing has been changed in the long-term memory, nothing has been learned.’ (Kirschner et al 2006, p77)

Intuitively, we know this is true from learning to read. Before we could read, letters on the page meant very little. We didn’t have the stores in our long-term memory to decode the symbols, and struggled with what is now automatic. Try memorising the ten symbols ‘%^&$£@&*!@’ as compared to ‘the boys ran’ for an example of the powerful chunking of your long-term memory. Or try 7×8 as opposed to 18×7: one is stored and retained automatically, one requires working memory capacity to add up 10×7 + 8×7 to 126. Similarly, all of us have in the past crammed for exams that if we took now, we’d probably fail. That’s because our long-term memories require usage for retention. The more work is done in retrieving the memory, the stronger it becomes.

Empirically, the critical importance of long-term memory has been established beyond all reasonable doubt:

‘Our understanding of the role of long-term memory in human cognition has altered dramatically over the last few decades. It is no longer seen as a passive repository of discrete, isolated fragments of information that permit us to repeat what we have learned. Nor is it seen only as a component of human cognitive architecture that has merely peripheral influence on complex cognitive processes such as thinking and problem solving. Rather, long-term memory is now viewed as the central, dominant structure of human cognition. Everything we see, hear, and think about is critically dependent on and influenced by our long-term memory’. (Kirschner et al 2006, p76)


knowledge3. Knowledge schema

The more knowledge you have, and the more automatically you can access it, the easier you find it to remember new knowledge, and the faster your skills develop.

Intuitively, many teachers know this from teaching mixed-ability classes: those pupils who know more to start with, learn faster.  You also know this from reading an article in The Economist on education compared to finance: your existing knowledge helps you get to grips with what it’s all about. It’d be easier for us to debate from memory the education system in England than the system of head-hunting in Borneo, because we know so much more about one than the other.

Empirically, in studies since 1988 a vast research base has been built up that shows the powerful, beneficial effects of knowledge on memory (Recht et al 1988; Alexander et al 1994; Cummings et al 1999; Van Overschelde 2001, Willingham 2007, 2009 etc).

Given that learning is inhibited by working memory overload, accelerated by long-term memory retrieval, and automated by knowledge accumulation, the imperative for teachers within and across lessons is clear: minimise overload, maximise retrieval and automate and accumulate knowledge. The research is robustly peer-reviewed, and passes my litmus test of rewarding re-reading: the more I look into the cognitive psychology of how the mind learns, the more I get out of it in terms of how to teach. It’s like reading the cheat codes to intelligence. 

Litmus TestLitmus Test Two: Just how practical is the evidence?

My litmus test here is simple: the more you apply it in the classroom, the more useful it should become. Apart from the five core practices of instruction, including examples, questions, practice, feedback and misconceptions, which I have blogged about here, there are three specific teaching tools suggested by cognitive scientists applicable to learning work across subjects and age groups (Sweller et al 1998), (Kirschner et al 2006), (Dunlosky et al).

1. Worked Examples

2. Completion Problems

3. Process Worksheets

Some of the best teachers I know use these without the labels. If you don’t use them, try them out, and see for yourself if they pass the litmus test. Certainly, the more I use them in lessons, the more my pupils get out of them.

chunks1. Worked Examples

The worked example effect, replicated a number of times (1985, 1987, 1992, 1993, 1994 1996 & 1999), shows that learners required to solve problems perform worse on subsequent test problems than learners who study the equivalent worked examples. Studying and comparing lots of worked examples reduces cognitive overload. Working memory is freed entirely for the study of the problem and solution steps. In English, and other subjects with a heavy writing load, this means getting students to compare worked examples of model paragraphs, either to criticise and improve, or to annotate and aspire to. If they haven’t seen an example of what they’re aiming for, how can they work towards achieving it? The best teachers write lots and lots and lots of example paragraphs, introductions, conclusions and essays. In Maths, worked examples are step-by-step model solutions to the problem.


problems2. Completion Problems

Completion problems are worked examples with partial solutions, where students complete the rest of the solution. Writing frames in English help by preventing cognitive overload and forcing students to make lots of strong analytical points in concise paragraphs. Acronym mnemonics such as PEEL in English and SOHCAHTOA in Maths help students’ retention of the underpinning process in the long-term memory.


practice3. Process Worksheets

Process worksheets guide students through a sequential series of steps required to solve a complex problem like completing the square in maths or comparing poems in English. They minimise overload whilst maximising retrieval.


So, what can science tell us about how pupils learn? And how can we teach so that pupils learn best? Overall, the scientific evidence is conclusive that pupils learn best by effort and hard work: thinking, concentrating, practising, memorising and recalling subject content. Teachers can accelerate pupils’ learning by minimising cognitive overload, then specifying, sequencing, testing and revisiting subject knowledge until it becomes automated in their long-term memory.

Whether this is pseudo-science or the real deal, Ben Goldacre’s Randomised Controlled Trials and Tom Bennett’s ResearchED conference may yet find out. Let the trials begin!

Research Base:

Dunlosky, J., Rawson, K.A, Marsh, E.J, Nathan, M.J., & Willingham, D.T.: Improving Students’ Learning with Effective Techniques: Promising Directions From Cognitive and Educational Psychology Psychological Science in the Public Interest 14(1) 4–58

Sweller J., van Merrienboer J. and Paas F. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3), pp.251-296

Willingham, D.T. (2007) Cognition: The Thinking Animal. Upper Saddle River, NJ: Prentice Hall. The graduate textbook of cognitive psychology

Alexander, P.A., Kulikowich,, J.M, & Schulze, S.K.: (1994) How subject matter knowledge affects recall and interest. American Educational Research Journal, 31, 313-337.

Rohrer, D. & Pashler, H. (2007) Increasing retention without increasing study time. Current Directions in Psychological Science, 16, 183-186. Distributed practice leads to more enduring memory

Cepeda, N.J, Pashler, H & Vul, E: (2006) Distributed practice in verbal recall tasks: a review and quantatitve synthesis. Pscyhological Bulletin, 132, 354-380. Comprehensive review of the effect of distributed practice on memory

Cumming, J & Elkins:j (1999) Lack of automaticity in the basic addition facts as a characteristic of arithmetic learning problems and instructional needs. Mathemetical Cognition, 5, 149-180. One for the Maths teachers…

Bransford, J.D. Brown, A.L, & Cocking, R.R: (Eds) 2002: How people learn: Brain, mind, experience and school. Washington DC, National Academy Press. Lessons from the science of human learning recommended by Willingham as accessible.

Feldon: Cognitive load and classroom teaching: the double-edged sword of automacity. Educational Psychologist, 42, 123-137.

Recht, D.R: & Leslie, L: (1988): Effect of prior knowledge on good an poor readers’ memory of texthttp://www.mendeley.com/catalog/effect-prior-knowledge-good-poor-readers-memory-text-1/. Journal of Educational Psychology, 80, 16-20. Prior knowledge has a powerful impact on lasting memory.

Van Overschelde, J.P & Healy, AF (2001) Learning of non-domain facts in high- and low-knowledge domains. Journal of Experimental Psychology: Learning, Memory & Cognition.

Kirschner A., Sweller J. and Clark E., 2006. Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching, Educational Psychologist, 41(2), pp.75–86

About Joe Kirby

School leader, education writer, Director of Education and co-founder, Athena Learning Trust, Deputy head and co-founder, Michaela Community School, English teacher
This entry was posted in Education, Psychology. Bookmark the permalink.

37 Responses to What can science tell us about how pupils learn best?

  1. Pingback: What can science tell us about how pupils learn best? | Back to the Whiteboard

  2. Reblogged this on legaltrexblog.

  3. Pingback: What is the number one shift in UK education I hope to see in my lifetime? | Pragmatic Education

  4. Pingback: OTR Links 03/24/2013 | doug --- off the record

  5. Neil G says:

    There are a vast array of errors in educational science. To the point of fear of reading anything which claims to have impact in a clasroom!!

    Wheter we are discussing the translation of cognitive science or a an action research project, such translation is often done by a researcher void of any approrpriate bavkground or support in their respective field.

    Very often it is left to teachers, void of any significant understanding of psychology, or cognitive scientists (void of an understanding of classroom practice to translate each others findings independently. This often occurs in different parts of the building , very often different departments, with little discussion nor debate.

    Worryingly, we flock to and demand “scientific “data like moths to a flame. If it is randomised it is to be believed, or even more if it contains an MRI image (alas even though we are sacrily unaware of what such studies actually mean) then we should roll it out in the clasroom right now. The more sciency the research the more impact it has. Rather than picking research methodologies shown to work and promote better knowledge of classroom practice and learning, we are following societal expectation of what we think science looks like

    The problem is that we have not yet established the study of learning – from my point of view as a qualified psychologist, biomedical scientist, teacher and researcher I am terrified that we have not established a common ground between the fields which claim to be active in educational research.

    By comon ground, I mean a shared practice for sound research methodologies – thus defining what we mean by scientific. Furthermore, there needs to be shared and equal respect between disciplines which escapes traditional paradigms that medical equals best. This will promote multidisciplinary research – and if we are going to estbalish sound working practice, this is essential.

  6. Chris says:

    Goldacre’s idea of applying evidence-based research methodology to education is a good one. Try something lots of times, see how well it works, have a control group you’re not testing and compare the two.

    Good, fine.

    The next step is – what do you do with the information?

    If you’ve found out that, say, direct instruction works well for a specfic topic, but you have an observation coming up, do you use that method even if you have a hunch it won’t be appreciated by the observer?

    As you’ve mentioned on a previous post, in theory Wilshaw has said that as long as you can show good and sustained progress, you should teach how you like. In practice, as you’ve noted… this isn’t the case.

    For evidence-based research to be effective, the findings of individual teachers need to be fed into and accepted by the profession as a whole.

  7. Pingback: Effective Revision Strategies | huntingenglish

  8. Pingback: Why isn’t our education system working? | Pragmatic Education

  9. Pingback: Why isn’t our education system working?

  10. Pingback: Edssential » What science can tell us about how pupils learn best?

  11. Pingback: Which ideas are damaging education? | Pragmatic Education

  12. Pingback: Which ideas are damaging education?

  13. Pingback: Why teaching skills without knowledge doesn’t work | Pragmatic Education

  14. Pingback: Pragmatic Education

  15. Pingback: How can we improve our education system? | Pragmatic Education

  16. Pingback: Knowledge, Skills and False Dichotomies | Africa 2 Enfield

  17. Pingback: Knowledge, Skills and False Dichotomies | Improving Teaching

  18. Pingback: Inducing Quality Writing | Improving Teaching

  19. Pingback: Exam Revision – some thoughts… | Heavers and Selsdon Teaching Resources

  20. Pingback: A summary of ideas on this blog | Pragmatic Education

  21. Pingback: A summary of ideas on this blog | Pragmatic Education

  22. lerenhoezo says:

    Reblogged this on Leren.Hoe?Zo!.

  23. Pingback: What happens when cognitive science meets visible learning? | Pragmatic Education

  24. Pingback: Who says knowledge is pointless in English? | Pragmatic Education

  25. Pingback: What I learned from learning the periodic table and other thoughts on memory and retention of historical knowledge and understanding | Improving Teaching

  26. Pingback: Why we shouldn’t close down the skills-knowledge debate | Pragmatic Education

  27. Pingback: How best to teach: knowledge-led or skills-led lessons? | Pragmatic Education

  28. Pingback: A guide to this blog | Pragmatic Education

  29. Pingback: What Sir Ken Got Wrong | Pragmatic Education | Magnitudes of dissonance

  30. grahart says:

    Reblogged this on grahart.

  31. Geoff Petty says:

    Great piece! I went through a similar process in writing my book ‘Evidence Based Teaching’ see early chapter on cog psy. Later chaps look at Effect size research and Experrt Teachers. Then I triangulated these sources to get practical advice for teachers. I taught 25 yrs now semi retired. Book sells well. I’ll post u a copy if u send me your address

  32. Reblogged this on #TeachGeog.

  33. Pingback: Teachers lead the scientific revolution in education: 44+ seminal articles | Joe Kirby

  34. Pingback: Treasure Trove #4: Cognitive Science Crash Course | Joe Kirby

  35. Pingback: Treasure Trove #5: A Cognitive Science Crash Course | Joe Kirby

Leave a Reply